Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617281

RESUMO

The gut microbiome possesses numerous biochemical enzymes that biosynthesize metabolites that impact human health. Bile acids comprise a diverse collection of metabolites that have important roles in metabolism and immunity. The gut microbiota-associated enzyme that is responsible for the gateway reaction in bile acid metabolism is bile salt hydrolase (BSH), which controls the host's overall bile acid pool. Despite the critical role of these enzymes, the ability to profile their activities and substrate preferences remains challenging due to the complexity of the gut microbiota, whose metaproteome includes an immense diversity of protein classes. Using a systems biochemistry approach employing activity-based probes, we have identified gut microbiota-associated BSHs that exhibit distinct substrate preferences, revealing that different microbes contribute to the diversity of the host bile acid pool. We envision that this chemoproteomic approach will reveal how secondary bile acid metabolism controlled by BSHs contributes to the etiology of various inflammatory diseases.

2.
Chembiochem ; : e202300821, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564329

RESUMO

Bile acids are bioactive metabolites that are biotransformed into secondary bile acids by the gut microbiota, a vast consortium of microbes that inhabit the intestines. The first step in intestinal secondary bile acid metabolism is carried out by a critical enzyme, bile salt hydrolase (BSH), that catalyzes the gateway reaction that precedes all subsequent microbial metabolism of these important metabolites. As gut microbial metabolic activity is difficult to probe due to the complex nature of the gut microbiome, approaches are needed to profile gut microbiota-associated enzymes such as BSH. Here, we develop a panel of BSH activity-based probes (ABPs) to determine how changes in diurnal rhythmicity of gut microbiota-associated metabolism affects BSH activity and substrate preference. This panel of covalent probes enables determination of BSH activity and substrate specificity from multiple gut anerobic bacteria derived from the human and mouse gut microbiome. We found that both gut microbiota-associated BSH activity and substrate preference is rhythmic, likely due to feeding patterns of the mice. These results indicate that this ABP-based approach can be used to profile changes in BSH activity in physiological and disease states that are regulated by circadian rhythms.

3.
Nature ; 628(8006): 180-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480886

RESUMO

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Assuntos
Citrobacter rodentium , Mucosa Intestinal , Receptores de Dopamina D2 , Triptofano , Animais , Feminino , Humanos , Masculino , Camundongos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carga Bacteriana/efeitos dos fármacos , Citrobacter rodentium/crescimento & desenvolvimento , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Suplementos Nutricionais , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/patogenicidade , Escherichia coli O157/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Receptores de Dopamina D2/metabolismo , Triptofano/administração & dosagem , Triptofano/metabolismo , Triptofano/farmacologia
4.
Biochemistry ; 62(21): 3076-3084, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37883888

RESUMO

The human intestines are colonized by trillions of microbes, comprising the gut microbiota, which produce diverse small molecule metabolites and modify host metabolites, such as bile acids, that regulate host physiology. Biosynthesized in the liver, bile acids are conjugated with glycine or taurine and secreted into the intestines, where gut microbial bile salt hydrolases (BSHs) deconjugate the amino acid to produce unconjugated bile acids that serve as precursors for secondary bile acid metabolites. Among these include a recently discovered class of microbially conjugated bile acids (MCBAs), wherein alternative amino acids are conjugated onto bile acids. To elucidate the metabolic potential of MCBAs, we performed detailed kinetic studies to investigate the preference of BSHs for host-conjugated bile acids and MCBAs. We identified a BSH that exhibits positive cooperativity uniquely for MCBAs containing an aromatic side chain. Further molecular modeling and phylogenetic analyses indicated that the BSH preference for aromatic MCBAs is due to a substrate-specific cation-π interaction and is predicted to be widespread among human gut microbial BSHs.


Assuntos
Amidoidrolases , Ácidos e Sais Biliares , Humanos , Filogenia , Cinética , Eletricidade Estática , Amidoidrolases/metabolismo
5.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808785

RESUMO

The human intestines are colonized by trillions of microbes, comprising the gut microbiota, which produce diverse small molecule metabolites and modify host metabolites, such as bile acids, that regulate host physiology. Biosynthesized in the liver, bile acids are conjugated with glycine or taurine and secreted into the intestines, where gut microbial bile salt hydrolases (BSHs) deconjugate the amino acid to produce unconjugated bile acids that serve as precursors for secondary bile acid metabolites. Among these include a recently discovered class of microbially-conjugated bile acids (MCBAs), wherein alternative amino acids are conjugated onto bile acids. To elucidate the metabolic potential of MCBAs, we performed detailed kinetic studies to investigate the preference of BSHs for host- and microbially-conjugated bile acids. We identified a BSH that exhibits positive cooperativity uniquely for MCBAs containing an aromatic sidechain. Further molecular modeling and phylogenetic analyses indicated that BSH preference for aromatic MCBAs is due to a substrate-specific cation-π interaction and is predicted to be widespread among human gut microbial BSHs.

6.
Isr J Chem ; 63(1-2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37841997

RESUMO

Bacteria constitute a major lifeform on this planet and play numerous roles in ecology, physiology, and human disease. However, conventional methods to probe their activities are limited in their ability to visualize and identify their functions in these diverse settings. In the last two decades, the application of click chemistry to label these microbes has deepened our understanding of bacterial physiology. With the development of a plethora of chemical tools that target many biological molecules, it is possible to track these microorganisms in real-time and at unprecedented resolution. Here, we review click chemistry, including bioorthogonal reactions, and their applications in imaging bacterial glycans, lipids, proteins, and nucleic acids using chemical reporters. We also highlight significant advances that have enabled biological discoveries that have heretofore remained elusive.

7.
Isr J Chem ; 63(3-4)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37842282

RESUMO

Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.

8.
Curr Opin Chem Biol ; 76: 102351, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429085

RESUMO

Activity-based protein profiling (ABPP) is a powerful chemical approach for probing protein function and enzymatic activity in complex biological systems. This strategy typically utilizes activity-based probes that are designed to bind a specific protein, amino acid residue, or protein family and form a covalent bond through a reactivity-based warhead. Subsequent analysis by mass spectrometry-based proteomic platforms that involve either click chemistry or affinity-based labeling to enrich for the tagged proteins enables identification of protein function and enzymatic activity. ABPP has facilitated elucidation of biological processes in bacteria, discovery of new antibiotics, and characterization of host-microbe interactions within physiological contexts. This review will focus on recent advances and applications of ABPP in bacteria and complex microbial communities.


Assuntos
Microbioma Gastrointestinal , Microbiota , Proteoma/metabolismo , Proteômica , Bactérias/metabolismo
9.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993486

RESUMO

The gut microbiome plays major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea, and acute renal failure (hemolytic uremic syndrome)4,5. Although gut microbes can provide colonization resistance by outcompeting some pathogens or modulating host defense provided by the gut barrier and intestinal immune cells, this phenomenon remains poorly understood. Emerging evidence suggests that small-molecule metabolites produced by the gut microbiota may mediate this process6. Here, we show that tryptophan (Trp)-derived metabolites produced by the gut bacteria protect the host against Citrobacter rodentium, a murine AE pathogen widely used as a model for EHEC infection7,8, by activation of the host neurotransmitter dopamine receptor D2 (DRD2) within the intestinal epithelium. We further find that these Trp metabolites act through DRD2 to decrease expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Previously identified mechanisms of colonization resistance either directly affect the pathogen by competitive exclusion or indirectly by modulation of host defense mechanisms9,10, so our results delineate a noncanonical colonization resistance pathway against AE pathogens featuring an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization within the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches for improving gut health and treating gastrointestinal infections, which afflict millions globally.

10.
Methods Enzymol ; 664: 85-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35331380

RESUMO

Bile acids are important molecules that participate in digestion and regulate many host physiological processes, including metabolism and inflammation. Primary bile acids are biosynthesized from cholesterol in the liver, where they are conjugated to glycine and taurine before secretion into the intestines. A small fraction of these molecules remain in the gut, where they are modified by a microbial enzyme, bile salt hydrolase (BSH), which deconjugates the glycine and taurine groups. This deconjugation precedes all subsequent biotransformation in the intestines, including regioselective dehydroxylation and epimerization reactions, to produce numerous secondary bile acids. Thus, BSH is considered the gatekeeper enzyme of secondary bile acid metabolism, and, as a result, it controls the overall bile acid composition in the host. Despite the critical role that BSH plays in bile acid metabolism, there exist few tools to probe its activity in complex biological mixtures. In this chapter, we describe a chemoproteomic approach termed BSH-TRAP (bile salt hydrolase tagging and retrieval with activity-based probes) that enables visualization and identification of BSH activity in bacteria. Here, we describe application of BSH-TRAP to cultured bacterial strains and the gut microbes derived from mice. We envision that BSH-TRAP could be used to profile changes in BSH activity and identify novel BSH enzymes in complex biological samples, such as the gut microbiome.


Assuntos
Amidoidrolases , Ácidos e Sais Biliares , Amidoidrolases/metabolismo , Animais , Bactérias/metabolismo , Glicina , Camundongos , Taurina
11.
ACS Cent Sci ; 6(12): 2123-2125, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33376773
12.
J Am Chem Soc ; 142(42): 18103-18108, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32975936

RESUMO

T helper 17 (Th17) cells, an important subset of CD4+ T cells, help to eliminate extracellular infectious pathogens that have invaded our tissues. Despite the critical roles of Th17 cells in immunity, how the immune system regulates the production and maintenance of this cell type remains poorly understood. In particular, the plasticity of these cells or their dynamic ability to trans-differentiate into other CD4+ T cell subsets remains mostly uncharacterized. Here, we report a synthetic immunology approach using a photoactivatable immune modulator (PIM) to increase Th17 cell differentiation on demand with spatial and temporal precision to help elucidate this important and dynamic process. In this chemical strategy, we developed a latent agonist that upon photochemical activation releases a small-molecule ligand that targets the aryl hydrocarbon receptor (AhR) and ultimately induces Th17 cell differentiation. We used this chemical tool to control AhR activation with spatiotemporal precision within cells and to modulate Th17 cell differentiation on demand using UV light illumination. We envision that this approach will enable an understanding of the dynamic functions and behaviors of Th17 cells in vivo during immune responses and in mouse models of inflammatory disease.


Assuntos
Carbazóis/farmacologia , Engenharia Celular , Fatores Imunológicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Carbazóis/síntese química , Carbazóis/química , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Estrutura Molecular , Processos Fotoquímicos , Receptores de Hidrocarboneto Arílico/imunologia , Células Th17
13.
Proc Natl Acad Sci U S A ; 117(32): 19376-19387, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719140

RESUMO

Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are associated with dysbiosis of the gut microbiome. Emerging evidence suggests that small-molecule metabolites derived from bacterial breakdown of a variety of dietary nutrients confer a wide array of host benefits, including amelioration of inflammation in IBDs. Yet, in many cases, the molecular pathways targeted by these molecules remain unknown. Here, we describe roles for three metabolites-indole-3-ethanol, indole-3-pyruvate, and indole-3-aldehyde-which are derived from gut bacterial metabolism of the essential amino acid tryptophan, in regulating intestinal barrier function. We determined that these metabolites protect against increased gut permeability associated with a mouse model of colitis by maintaining the integrity of the apical junctional complex and its associated actin regulatory proteins, including myosin IIA and ezrin, and that these effects are dependent on the aryl hydrocarbon receptor. Our studies provide a deeper understanding of how gut microbial metabolites affect host defense mechanisms and identify candidate pathways for prophylactic and therapeutic treatments for IBDs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células CACO-2 , Colite Ulcerativa/dietoterapia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Miosina não Muscular Tipo IIA/metabolismo , Permeabilidade , Receptores de Hidrocarboneto Arílico/genética , Triptofano/administração & dosagem
14.
ACS Chem Biol ; 15(5): 1119-1126, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31895538

RESUMO

The gut microbiome, the collection of 100 trillion microorganisms that resides in the intestinal lumen, plays major roles in modulating host physiology. One well-established function of the gut microbiota is that of colonization resistance or the ability of the microbial collective to protect the host against enteric pathogens. Although evidence suggests that these microbes may outcompete some pathogens, there remains a lack of mechanistic understanding that underlies this competitive exclusion. In recent years, there has been great interest in small-molecule metabolites that are produced by the gut microbiota and in understanding how these molecules regulate host-pathogen interactions. In this review, we briefly summarize these findings by focusing on several classes of metabolites that mediate this important process. Understanding these host-microbe interactions in the gut may lead to identification of potential candidates for the development of prophylactics and therapeutics for many infectious diseases that are impacted by the gut microbiome.


Assuntos
Anti-Infecciosos/farmacologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Aminoácidos/química , Aminoácidos/metabolismo , Descoberta de Drogas , Resistência Microbiana a Medicamentos , Ácidos Graxos Voláteis/química , Ácidos Graxos Voláteis/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Metaboloma , Triptofano/química , Triptofano/metabolismo
15.
ACS Cent Sci ; 5(5): 867-873, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31139722

RESUMO

The metagenome of the gut microbiome encodes tremendous potential for biosynthesizing and transforming small-molecule metabolites through the activities of enzymes expressed by intestinal bacteria. Accordingly, elucidating this metabolic network is critical for understanding how the gut microbiota contributes to health and disease. Bile acids, which are first biosynthesized in the liver, are modified in the gut by enzymes expressed by commensal bacteria into secondary bile acids, which regulate myriad host processes, including lipid metabolism, glucose metabolism, and immune homeostasis. The gateway reaction of secondary bile acid biosynthesis is mediated by bile salt hydrolases (BSHs), bacterial cysteine hydrolases whose action precedes other bile acid modifications within the gut. To assess how changes in bile acid metabolism mediated by certain intestinal microbiota impact gut physiology and pathobiology, methods are needed to directly examine the activities of BSHs because they are master regulators of intestinal bile acid metabolism. Here, we developed chemoproteomic tools to profile changes in gut microbiome-associated BSH activity. We showed that these probes can label active BSHs in model microorganisms, including relevant gut anaerobes, and in mouse gut microbiomes. Using these tools, we identified altered BSH activities in a murine model of inflammatory bowel disease, in this case, colitis induced by dextran sodium sulfate, leading to changes in bile acid metabolism that could impact host metabolism and immunity. Importantly, our findings reveal that alterations in BSH enzymatic activities within the gut microbiome do not correlate with changes in gene abundance as determined by metagenomic sequencing, highlighting the utility of chemoproteomic approaches for interrogating the metabolic activities of the gut microbiota.

16.
Trends Pharmacol Sci ; 40(6): 430-445, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079848

RESUMO

The human intestine harbors an immense, diverse, and critical population of bacteria that has effects on numerous aspects of host physiology, immunity, and disease. Emerging evidence suggests that many of the interactions between the host and the gut microbiota are mediated via the microbial metabolome, or the collection of small-molecule metabolites produced by intestinal bacteria. This review summarizes findings from recent work by focusing on different classes of metabolites produced by the gut microbiota and their effects in modulating host health and disease. These metabolites ultimately serve as a form of communication between the gut microbiome and the host, and a better understanding of this chemical language could potentially lead to novel strategies for treating a wide variety of human disorders.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Sistema Imunitário/fisiologia , Metaboloma
17.
ACS Cent Sci ; 4(8): 948-949, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30159390
18.
Chem Sci ; 8(2): 1450-1453, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451285

RESUMO

The immune system is an essential component of host defense against pathogens and is largely mediated by inflammatory molecules produced by immune cells, such as macrophages. These inflammatory mediators are regulated at the transcriptional level by chromatin-modifying enzymes including histone deacetylases (HDACs). Here we describe a strategy to regulate inflammation and immunity with photocontrolled HDAC inhibitors, which can be selectively delivered to target cells by UV irradiation to minimize off-target effects. We strategically photocaged the active moiety of an HDAC inhibitor and showed that mild UV irradiation leads to the selective release of the inhibitor in a spatiotemporal manner. This methodology was used to decrease the amount of pro-inflammatory mediators produced by a subpopulation of macrophages. Our approach could ultimately be used to control inflammation in vivo as a therapeutic for inflammatory diseases, while minimizing off-target effects to healthy tissues.

19.
Proc Natl Acad Sci U S A ; 111(6): 2247-52, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24390544

RESUMO

Given the trillions of microbes that inhabit the mammalian intestines, the host immune system must constantly maintain a balance between tolerance to commensals and immunity against pathogens to avoid unnecessary immune responses against otherwise harmless bacteria. Misregulated responses can lead to inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. The mechanisms by which the immune system maintains this critical balance remain largely undefined. Here, we demonstrate that the short-chain fatty acid n-butyrate, which is secreted in high amounts by commensal bacteria, can modulate the function of intestinal macrophages, the most abundant immune cell type in the lamina propria. Treatment of macrophages with n-butyrate led to the down-regulation of lipopolysaccharide-induced proinflammatory mediators, including nitric oxide, IL-6, and IL-12, but did not affect levels of TNF-α or MCP-1. These effects were independent of toll-like receptor signaling and activation of G-protein-coupled receptors, two pathways that could be affected by short-chain fatty acids. In this study, we provide several lines of evidence that suggest that these effects are due to the inhibition of histone deacetylases by n-butyrate. These findings elucidate a pathway in which the host may maintain tolerance to intestinal microbiota by rendering lamina propria macrophages hyporesponsive to commensal bacteria through the down-regulation of proinflammatory effectors.


Assuntos
Butiratos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Intestinos/citologia , Macrófagos/citologia , Animais , Células da Medula Óssea/citologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo
20.
Chem Commun (Camb) ; 48(71): 8864-79, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22801420

RESUMO

Imaging technologies developed in the early 20th century achieved contrast solely by relying on macroscopic and morphological differences between the tissues of interest and the surrounding tissues. Since then, there has been a movement toward imaging at the cellular and molecular level in order to visualize biological processes. This rapidly growing field is known as molecular imaging. In the last decade, many methodologies for imaging proteins have emerged. However, most of these approaches cannot be extended to imaging beyond the proteome. Here, we highlight some of the recently developed technologies that enable imaging of non-proteinaceous molecules in the cell: lipids, signalling molecules, inorganic ions, glycans, nucleic acids, small-molecule metabolites, and protein post-translational modifications such as phosphorylation and methylation.


Assuntos
Proteoma/metabolismo , Corantes Fluorescentes/química , Indicadores e Reagentes/química , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteômica , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA